教学内容:九年义务教育六年制数学第九册(人教版)第58——59页。
教学目标: 1、使学生初步理解相遇问题的意义。
2、使学生会分析相遇问题的数量关系和解题方法。
3、培养学生初步逻辑思维能力。
教学重点:相遇问题中数量关系的理解和解题思路的分析。
教学难点:解答问题时对速度和的理解和运用。
教具准备:演示软件、实物投影机、幻灯机。
教学过程:
开场白:
同学们,过去我们已经学过一些有关行程问题的知识,今天,我们要在过去的知识基础上,把这个问题作进一步的研究,为更好地掌握新知识,现在我们把一些相关知识进行复习。
一、复习铺垫:
口答:
1、张华每分钟走65米,走了4分钟,一共走了多少米?
65×4=260(米)
提问:为什么这样求?谁会用一个数量关系式表示?
在学生回答的同时板书:速度×时间=路程。并由学生说明:张华行走的速度是每分钟走65米,时间是4分钟,求一共走多少米?就是求张华所走的路程。
2、李诚每分钟走70米,走了4钟, ?
由学生补充问题并进行计算。
二、新授:
1、导入新课:刚才我们复习了一般的求路程的行程应用题,它是由一个物体运动完成的。下面我们研究两个物体运动的行程应用题。
2、出示准备题:
①读题看演示,初步理解题意。
问:题中告诉我们,张华和李诚是怎样出发的?他们行走的方向又是怎样?(两人同时从家里出发,向对方走去)
板书:两地 同时出发 相向而行
②边演示边带学生填写P58表格的数据,并分析数量关系。
这是他们两人走的时间和路程的变化情况表。我们看看1分钟的情况(演示1分钟的情况)教师问:张华1分钟走60米,李诚1分钟走70米,那么两人所走路程的和是多少?你是怎样算的?现在两人的距离是多少?怎样计算?下面请同学们按表中的四个要求填写2分、3分的路程变化情况。
学生翻开课本第58页填写。(教师巡视)
师生继续填写完这个表格,边演示边让学生回答2分、3分时的情况。填写完后,教师指表的第4列问:纵观此列,每经过1分钟,两人之间的距离有什么变化?(缩短了1个60+70米)当两人距离为0米时,说明两人相遇了,这时他们用的时间都是3分钟。板书:相遇。问:相遇时,两人所走路程的和与两家的距离有什么关系?(正好相等)。学生回答后板书:两人所走路程的和=两地间的距离。
3、小结并揭示课题
像这样,两人从两地同时出发,相向而行,最后相遇,他们所走路程之和正好等于两地间的距离。我们称它为相遇问题。现在我们就学习解答相遇求路程的方法。板书课题:相遇应用题。
4、讲授例5。
①出示例5,教师读题,学生说出已知条件和问题。
问:小强和小丽是怎样运动的?(两人同时从自己家里走向学校)也就是从两地同时出发,相向而行,经过4分,两人怎样?(相遇在校门口)
②启发学生学习第一种解法
演示后提问: a、小强小丽走的路程各是哪一段?用色段表示。
b、两人4分所走路程的和与两家相距的米数有什么关系?(正好相等)
c 、要求两家相距多少米?可先求什么?(先求两人到校时各自走的路程)再怎样?(将它们合起来)就得出时各自走的路程)再怎样?(将它们合起来)就得出两家相距的米数。
指一名学生口述,教师板书:65×4+70×4
=260+280
=540(米)
问:65×4和70×4分别表示什么?为什么要相加?
③启发学生学习第二种解法。
问:这道题还有别的解法吗?让学生列式计算。
指一名学生口述,教师板书:(65+70)×4
=135×4
=540(米)
问:65+70求出什么?乘以4表示什么意思?请讲出你的解题思路。
相遇时,两人是否一共走了4个65+70米的路程呢?我们演示来验证一下。(演示)