您现在的位置:速学网教学教育免费教案数学教案高二数学教案数学教案-曲线和方程-教案» 正文

数学教案-曲线和方程-教案

[04-06 16:04:25]   来源:http://www.suxue6.com  高二数学教案   阅读:8697

概要: 的方程?根据是什么,有证明吗?(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解.设 是线段 的垂直平分线上任意一点,则 即 将上式两边平方,整理得 这说明点 的坐标 是方程 的解.(2)以这个方程的解为坐标的点都是曲线上的点.设点 的坐标 是方程①的任意一解,则 到 、 的距离分别为 所以 ,即点 在直线 上. 综合(1)、(2),①是所求直线的方程. 至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设 是线段 的垂直平分线上任意一点,最后得到式子 ,如果去掉脚标,这不就是所求方程 吗?可见,这个证明过程就表明一种求解过程,下面试试看:解法二:设 是线段 的垂直平分线上任意一点,也就是点 属于集合 由两点间的距离公式,点所适合的条件可表示为 将上式两边平方,整理得 果然成功,当然也不要忘了证明,即验证两条是否都满...
数学教案-曲线和方程-教案,标签:人教版高二数学教案,高二上学期数学教案,http://www.suxue6.com
的方程?根据是什么,有证明吗?

  (通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).

  证明:(1)曲线上的点的坐标都是这个方程的解.

  设  是线段  的垂直平分线上任意一点,则

 

          即

 

  将上式两边平方,整理得

 

  这说明点 的坐标  是方程  的解.

  (2)以这个方程的解为坐标的点都是曲线上的点.

  设点  的坐标  是方程①的任意一解,则

 

 

             的距离分别为

  

    

    

  

    

    

     所以  ,即点  在直线 上.

     综合(1)、(2),①是所求直线的方程.

    至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设  是线段 的垂直平分线上任意一点,最后得到式子  ,如果去掉脚标,这不就是所求方程  吗?可见,这个证明过程就表明一种求解过程,下面试试看:

  解法二:设  是线段 的垂直平分线上任意一点,也就是点 属于集合

 

  由两点间的距离公式,点所适合的条件可表示为

 

  将上式两边平方,整理得

 

  果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.

  这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.

  让我们用这个方法试解如下问题:

  例2:点 与两条互相垂直的直线的距离的积是常数  求点  的轨迹方程.

  分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.

  求解过程略.

【概括总结】通过学生讨论,师生共同总结:

  分析上面两个例题的求解过程,我们

上一页  [1] [2] 


Tag:高二数学教案人教版高二数学教案,高二上学期数学教案免费教案 - 数学教案 - 高二数学教案

Copyright 速学网 © 版权所有 All Rights Reserved.

1 2 3 4 5 6